
Volume 2: PROGRAMMING INFORMATION
Part 2: PROGRAM DESCRIPTIONS
Section 16: QDAATAN (B. 105A)
Contents
Chapter 1: INTRODUCTION
1.1 Purpose 1

1. 2 Form of Distribution 1
2. 3 Method of Use 1
3. 4 Accuracy 1
Chapter 2: FUNCTIONS
4. 1 Notation 2
5. 2 Format 2
6. 3 Number Type 2
7. 4 Entry and Exit 2
8. 5 Identifiers. 3
Chapter 3: ERROR INDICATION 4
Chapter 4: METHOD USED 4
Chapter 5: TIME TAKEN 5
Chapter 6: STORE USED 5

Chapter 1: INTRODUCTION

1.1 Purpose

To calculate, as a double-length fraction
$\mathrm{t}=(1 / \pi) \quad \tan ^{-1}(\mathrm{x} / \mathrm{y})$
and $b=(1 / 2 \pi)$ true bearing,
where $x_{9} y$ are double-length fractions.
1.2 Form of Distribution

The program is distributed as a SIR mnemonic tape.

1. 3 Method of Use

The routine is assembled as a block of the user's program and entered as a sub-routine. It can be run at any program level and in any store-module.

When QD.AA.TAN is used QDLA must also be held in store。
1.4 Accuracy

The maximum error is $2^{-34} \quad\left(0.6 \times 10^{-10}\right)$

Chapter 2: FUNCTIONS

2. 1 Notation

$x\left(m_{0} s_{0}\right)=$ most significant half of x $x(1$. so $)=$ least significant half of x
$\mathrm{x}_{\text {, }} \mathrm{t}$ are as defined in 1. 1
2. 2 Format

A double-length fraction, x_{9} is held in two consecutive store locations, X and $X+1$.

Bit 18 of \mathbb{X} gives the sign of X
Bits 17-1 of X give the 17 most significant bits of x
Bit 18 of $\mathrm{X}+1$ must be 0
Bits 17-1 of $X+1$ give the 17 least significant bits of x_{0}
Negative number representation is by the usual 2^{\prime} s complement notation (except that bit 18 of $\mathbb{X}+1$ must be 0).
2. 3 Number Type

All numbers must be treated by the programmer as pure fractions.

To enable this to be done QDAATAN calculates
$\mathrm{t}=(1 / \pi) \tan ^{-1}(\mathrm{x} / \mathrm{y})$
Note, therefore, that t is the value of an angle as a fraction of π radians (180°).
2. 4 Entry and Exit

A double-length number occupies two consecutive
locations; only the first is given below.
Entry (for assembly by SIR)
Place x in QDAATAN +136
y in QDA.A.TAN +138
and enter 11QD.AATAN 8QDAATAN+1

Exit
t in QDAATAN +142
b in QDAATAN+146
$b(m . s$.$) in the accumulator$
Note. The true bearing is found by taking
x along the easterly axis
y along the northerly axis
and measuring the angle in a clockwise direction.
N. B. The instruction pair must not form part of a pseudo-program interpreted by QDLA.

2. 5 Identifiers

QDAATAN must be declared as a global identifier in all blocks of a SIR program which refer to it.
2. 2. 16.

Chapter 3: ERROR INDICATION

If $x=y=0$
then 00000.001 is output continuously.

Chapter 4: METHOD USED
QDAATAN uses QDLA to interpret some of the double-length calculations.
a) The program computes

$$
a=\left\{\begin{array}{llll}
|x / y| & \text { if } & |x / y| & <1 \\
|y / x| & \text { if } & |x / y| & \geq 1
\end{array}\right.
$$

and applies the transformation

$$
z=\frac{a-(\sqrt{2}-1)}{(3-2 \sqrt{2}) a+(\sqrt{2}-1)}
$$

Note $|z|<1$
b) $\quad s=1 / \pi \tan (\sqrt{2-1}) z$
is calculated by a Chebyshev series.
c) The final result is found by forming
$u=(1 / \pi) \tan ^{-1}|x / y|= \begin{cases}\frac{1}{8}+s & \text { for }|x|<|y| \\ \frac{1}{2}-\left(\frac{1}{8}+s\right) & \text { for }|x| \geq|y|\end{cases}$
and t is found according to the table below

	$y \geq 0$	$y<0$
$x / y \geq 0$	u	$u-1$
$x / y \leq 0$	$1-u$	$-u$

and $\quad b= \begin{cases}\frac{1}{2} t & \text { if } x \geq 0 \\ \frac{1}{2} t+1 & \text { if } x<0\end{cases}$

Chapter 5: TIME TAKEN

Approximately 42. 4 milliseconds.

Chapter 6: STORE USED

QD.AATAN uses 167 consecutive locations and the appropriate B-register.

