ELIOTT

Volume	2:	PROGRAMMING INFORMATION
Part	2:	PROGRAM DESCRIPTIONS
Section	16:	QDAATAN (B. 105A)

Contents

			Page
Chapter	1:	INTRODUCTION	-
		1.1 Purpose	1
		1.2 Form of Distribution	1
		1.3 Method of Use	1
		1.4 Accuracy	1
Chapter	2:	FUNCTIONS	
		2.1 Notation	2
		2.2 Format	2
		2.3 Number Type	2
		2.4 Entry and Exit	2
		2.5 Identifiers	3
Chapter	3:	ERROR INDICATION	4
Chapter	4:	METHOD USED	4
Chapter	5:	TIME TAKEN	5
Chapter	6:	STORE USED	5

Chapter 1: INTRODUCTION

1.1 Purpose

To calculate, as a double-length fraction

 $t = (1/\pi) \quad \tan^{-1} (x/y)$ and b = (1/2\pi) true bearing,

where x, y are double-length fractions.

1.2 Form of Distribution

The program is distributed as a SIR mnemonic tape.

1.3 Method of Use

The routine is assembled as a block of the user's program and entered as a sub-routine. It can be run at any program level and in any store-module.

When QDAATAN is used QDLA must also be held in

store.

1.4 Accuracy

The maximum error is 2^{-34} (0.6 x 10⁻¹⁰)

903 2. 2. 16.

Chapter 2: FUNCTIONS

> 2.1 Notation

> > x(m.s.) = most significant half of x x(1. s.) = least significant half of x

x, t are as defined in 1.1

2.2 Format

A double-length fraction, x, is held in two consecutive store locations, X and X+1.

Bit 18 of X gives the sign of x Bits 17-1 of X give the 17 most significant bits of x Bit 18 of X+1 must be 0 Bits 17-1 of X+1 give the 17 least significant bits of x.

Negative number representation is by the usual 2's complement notation (except that bit 18 of X+1 must be 0).

> 2.3 Number Type

All numbers must be treated by the programmer as

pure fractions.

To enable this to be done QDAATAN calculates

 $t = (1/\pi) \tan^{-1} (x/y)$

Note, therefore, that t is the value of an angle as a fraction of π radians $(180^{\circ}).$

> 2.4 Entry and Exit

A double-length number occupies two consecutive locations; only the first is given below.

(for assembly by SIR) Entry

Place x in	QDAATAN+136
y in	QDAATAN+138
and enter	11QDAATAN
	8QDAATAN+1

903 2. 2. 16.

Exit

t in	QDAATAN+142
b in	QDAATAN+146
b(m.s.)	in the accumulator

Note. The true bearing is found by taking

x along the easterly axis

y along the northerly axis

and measuring the angle in a clockwise direction.

N.B. The instruction pair must not form part of a pseudo-program interpreted by QDLA.

2.5 Identifiers

QDAATAN must be declared as a global identifier in all blocks of a SIR program which refer to it.

903 2.2.16.

Chapter 3: ERROR INDICATION

If x=y=0 then 00000.001 is output continuously.

Chapter 4: METHOD USED

QDAATAN uses QDLA to interpret some of the double-length calculations.

a)

The program computes

a =
$$\begin{cases} |x/y| & \text{if } |x/y| < 1 \\ |y/x| & \text{if } |x/y| \ge 1 \end{cases}$$

and applies the transformation

$$z = \frac{a - (\sqrt{2} - 1)}{(3 - 2\sqrt{2}) a + (\sqrt{2} - 1)}$$

Note |z| <1

 $s = 1/\pi \tan(\sqrt{2-1})z$

is calculated by a Chebyshev series.

The final result is found by forming

97	<u>.</u>	$(1/\pi)$	tan-1	x /xr	_ {	1 8 + s	for	x < y
u		(*/!)	6011	x /y	_[$\frac{1}{2} - \left(\frac{1}{8} + s\right)$	for	$\begin{vmatrix} \mathbf{x} \\ \mathbf{x} \end{vmatrix} \leq \begin{vmatrix} \mathbf{y} \\ \mathbf{y} \end{vmatrix}$

and t is found according to the table below

	1 1	y<0
x./y≥0	u	u-1
x /y≤0	1-u	- u
	if x≥0 if x<0	- U

75

c)

b)

4 (Issue 2)

903 2.2.16.

Chapter 5: TIME TAKEN

Approximately 42.4 milliseconds.

Chapter 6: STORE USED

QDAATAN uses 167 consecutive locations and the appropriate B-register.